47 research outputs found

    Hosting the plant cells in vitro : recent trends in bioreactors

    Get PDF
    Biotechnological production of high-value metabolites and therapeutic proteins by plant in vitro systems has been considered as an attractive alternative of classical technologies. Numerous proof-of-concept studies have illustrated the feasibility of scaling up plant in vitro system-based processes while keeping their biosynthetic potential. Moreover, several commercial processes have been established so far. Though the progress on the field is still limited, in the recent years several bioreactor configurations has been developed (e.g., so-called single-use bioreactors) and successfully adapted for growing plant cells in vitro. This review highlights recent progress and limitations in the bioreactors for plant cells and outlines future perspectives for wider industrialization of plant in vitro systems as “green cell factories” for sustainable production of value-added molecules

    Genetically transformed roots: From plant disease to biotechnological resource

    Get PDF
    Hairy root syndrome is a disease that is induced by Agrobacterium rhizogenes infection and characterized by a proliferation of excessively branching roots. However, in the past 30 years A. rhizogenes-mediated transformation has also provided a valuable platform for studying biosynthesis pathways in plants. Furthermore, the genetically transformed root cultures are becoming increasingly attractive, cost-effective options for mass-producing desired plant metabolites and expressing foreign proteins. Numerous proof-of-concept studies have demonstrated the feasibility of scaling up hairy-root-based processes while maintaining their biosynthetic potential. Recently, hairy roots have also shown immense potential for applications in phytoremediation, that is, plant-based decontamination of polluted environments. This review highlights recent progress and limitations in the field, and outlines future perspectives for the industrial exploitation of hairy roots.Fil: Georgiev, Milen I.. Bulgarian Academy of Sciences; Bulgaria. Leiden University; PaĂ­ses BajosFil: Agostini, Elizabeth. Universidad Nacional de RĂ­o Cuarto; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Ludwig MĂŒller, Jutta. Technische Universitat Dresden; AlemaniaFil: Xu, Jianfeng. University of Arkansas for Medical Sciences; Estados Unido

    Formulation and Testing of Antioxidant and Protective Effect of Hyalurosomes Loading Extract Rich in Rosmarinic Acid Biotechnologically Produced from Lavandula angustifolia Miller

    Get PDF
    Culture of plant cells or tissues is a scalable, sustainable, and environmentally friendly approach to obtain extracts and secondary metabolites of uniform quality that can be continuously supplied in controlled conditions, independent of geographical and seasonal variations, environmental factors, and negative biological influences. In addition, tissues and cells can be extracted/obtained from the by-products of other industrial cultivations such as that of Lavandula angustifolia Miller (L. angustifolia), which is largely cultivated for the collection of flowers. Given that, an extract rich in rosmarinic acid was biotechnologically produced starting from cell suspension of L. angustifolia, which was then loaded in hyalurosomes, special phospholipid vesicles enriched with sodium hyaluronate, which in turn are capable of both immobilizing and stabilizing the system. These vesicles have demonstrated to be good candidates for skin delivery as their high viscosity favors their residence at the application site, thus promoting their interaction with the skin components. The main physico-chemical and technological characteristics of vesicles (i.e., mean diameter, polydispersity index, zeta potential and entrapment efficiency of extract in vesicles) were measured along with their biological properties in vitro: biocompatibility against fibroblasts and ability to protect the cells from oxidative stress induced by hydrogen peroxide. Overall, preliminary results disclosed the promising properties of obtained formulations to be used for the treatment of skin diseases associated with oxidative stress and inflammation.I.K.K. and M.I.G. acknowledge support from the European Union’s Horizon 2020 research and innovation programme, project PlantaSYST (SGA No 739582 under FPA No. 664620), and the BG05M2OP001-1.003-001-C01 project, financed by the European Regional Development Fund through the “Science and Education for Smart Growth” Operational Programme

    Rhodiola rosea L.:from golden root to green cell factories

    Get PDF

    The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis

    Get PDF
    Background: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. Methods: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. Results and Conclusion: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events
    corecore